Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices.
نویسندگان
چکیده
Specific side-by-side interactions between transmembrane alpha-helices may be important in the assembly and function of integral membrane proteins. We describe a system for the genetic and biophysical analysis of these interactions. The transmembrane alpha-helical domain of interest is fused to the C-terminus of staphylococcal nuclease. The resulting chimera can be expressed at high levels in Escherichia coli and is readily purified. In our initial application we study the single transmembrane alpha-helix of human glycophorin A (GpA), thought to mediate the SDS-stable dimerization of this protein. The resulting chimera forms a dimer in SDS, which is disrupted upon addition of a peptide corresponding to the transmembrane domain of GpA. Deletion mutagenesis has been used to delineate the minimum transmembrane domain sufficient for this behavior. Site-specific mutagenesis shows that a methionine residue, previously implicated as a potential interfacial residue, can be replaced with other hydrophobic residues without disrupting dimerization. By contrast, rather conservative substitutions at a valine on a different face of the alpha-helix disrupt dimerization, suggesting a high degree of specificity in the helix-helix interactions. This approach allows the interface between interacting helices to be defined.
منابع مشابه
A transmembrane helix dimer: structure and implications.
The three-dimensional structure of the dimeric transmembrane domain of glycophorin A (GpA) was determined by solution nuclear magnetic resonance spectroscopy of a 40-residue peptide solubilized in aqueous detergent micelles. The GpA membrane-spanning alpha helices cross at an angle of -40 degrees and form a small but well-packed interface that lacks intermonomer hydrogen bonds. The structure pr...
متن کاملModulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different lipids reveals how lipid chain length and saturation modulate the structural and energetic properties of trans...
متن کاملStructure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization.
The ability to predict the effects of point mutations on the interaction of alpha-helices within membranes would represent a significant step toward understanding the folding and stability of membrane proteins. We use structure-based empirical parameters representing steric clashes, favorable van der Waals interactions, and restrictions of side-chain rotamer freedom to explain the relative dime...
متن کاملThe effect of point mutations on the free energy of transmembrane alpha-helix dimerization.
Glycophorin A forms homodimers through interaction of the single, helical transmembrane domains of the monomers. The dimers are stable in sodium dodecylsulfate (SDS), permitting a number of studies that have identified a critical motif of residues that mediates dimer formation. We have used analytical ultracentrifugation to measure the energy of dimerization in a non-denaturing detergent soluti...
متن کاملThe stability of transmembrane helix interactions measured in a biological membrane.
Despite some promising progress in the understanding of membrane protein folding and assembly, there is little experimental information regarding the thermodynamic stability of transmembrane helix interactions and even less on the stability of transmembrane helix-helix interactions in a biological membrane. Here we describe an approach that allows quantitative measurement of transmembrane helix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 267 11 شماره
صفحات -
تاریخ انتشار 1992